Study on the ensemble methods with kernel ridge regression
نویسندگان
چکیده
منابع مشابه
Estimating Predictive Variances with Kernel Ridge Regression
In many regression tasks, in addition to an accurate estimate of the conditional mean of the target distribution, an indication of the predictive uncertainty is also required. There are two principal sources of this uncertainty: the noise process contaminating the data and the uncertainty in estimating the model parameters based on a limited sample of training data. Both of them can be summaris...
متن کاملA Comparative Study of Pairwise Learning Methods based on Kernel Ridge Regression
Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction or network inference problems. During the last decade kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their beha...
متن کاملKernel Ridge Regression via Partitioning
In this paper, we investigate a divide and conquer approach to Kernel Ridge Regression (KRR). Given n samples, the division step involves separating the points based on some underlying disjoint partition of the input space (possibly via clustering), and then computing a KRR estimate for each partition. The conquering step is simple: for each partition, we only consider its own local estimate fo...
متن کاملRidge regression ensemble for toxicity prediction
Traditional methods of assessing chemical toxicity of various compounds require tests on animals, which raises ethical concerns and is expensive. Current legislation may lead to a further increase of demand for laboratory animals in the next years. As a result, automatically generated predictions using Quantitative Structure–Activity Relationship (QSAR) modelling approaches appear as an attract...
متن کاملModelling Issues in Kernel Ridge Regression
Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Data and Information Science Society
سال: 2012
ISSN: 1598-9402
DOI: 10.7465/jkdi.2012.23.2.375